8 research outputs found

    Hands-free wearable system for helping in assembly tasks in aerospace

    Get PDF
    Las operaciones de mantenimiento tienen un gran impacto en la seguridad y esperanza de vida de cualquier producto, especialmente en ciertas aplicaciones dentro de la industria aeronáutica que tiene que pasar procedimientos muy rigurosos de seguridad. Los sistemas de ayuda llevables (wearable) pueden ayudar a reducir costes y tiempo de trabajo guiando a los operarios en tareas difíciles. El propósito de este trabajo es presentar un sistema de guiado de manos libre y llevable para soporte y ayuda de operarios en tareas de ensamblaje y verificación dentro del campo de la aeronáutica. El operario es capaz de pedir información al sistema sobre una tarea específica de un modo no invasivo así como pedir asistencia técnica al líder del equipo. El sistema desarrollado ha sido probado en una compañía aeronáutica (Airbus Military) y se ha evaluado su implementación en ciertas tareas de ensamblaje. La conclusión de las pruebas ha sido que el sistema ayuda a los operarios a realizar sus tareas de una manera más rápida, precisa y segura.Maintenance operations have a great impact on the safety and life expectancy of any product. This is especially true for certain applications within the aerospace industry, which must pass rigorous security checking procedures. Wearable helping systems can help to reduce costs and working time by guiding workers in some specifi c and diffi cult tasks. The purpose of this work is developing a handless and wearable guided system that supports and helps workers in assembly and verifi cation tasks within the aeronautic fi eld. The worker is able to request information for the specifi c task in a non invasive way and also ask the Team Leader for real time technical support and assistance. The system developed has been tested in an aeronautic company (Airbus Military) and its implementation in specifi c assembly tasks assessed. It was found that the proposed system can help workers to make their tasks faster, more accurate and more secure

    Políticas públicas

    Get PDF
    Amputación de extremidades superiores: caracterización epidemiológicaAnálisis comparado de las políticas de promoción de la salud entre Chile y CataluñaAnálisis de los Avisa para la toma de decisiones en políticas de saludAntecedentes de colelitiasis en pacientes que presentaron colecistitis aguda. ¿Se puede prevenir la urgencia?Asociación entre alcoholemia y traumatismos en Copiapó, 2009Automedicación en la población asistente al Cesfam de Puerto NatalesAutotoma vaginal para detección de VPH para la prevención de cáncer cervicouterino, ChileCalidad de atención programa Auge- cáncer cervicouterino: la perspectiva de los profesionalesCaracterización de los casos de traumatismo encéfalo craneano en la comuna de Til-TilConocimiento de conductores universitarios sobre la alcoholemia permitida para conducir y su equivalencia en bebidas alcohólicasDescripción de la consulta dermatológica pediátrica en el Hospital Roberto del Río (2007-2008)Elementos para un abordaje metodológico de la salud intercultural en la Región Metropolitana de SantiagoEstudio descriptivo de consultas Sapu Cesfam Angachilla, visión tras dos años de registro clínico-electrónicoEstudio descriptivo de ingresos a Conin Valdivia, una revisión de 10 años (1998-2008)Estudio descriptivo de pacientes hospitalizados por absceso y celulitis peritonsilar en el hospital de PurranqueEvaluación de la aceptabilidad y consumo de alimentos del Pacam inscritos en el Cesfam Dr. V.M.FEvaluación de la interacción de medicinas alternativas o complementarias (MAC) en dos centros APSExposición a humo de tabaco ambiental. Signos y síntomas respiratorios bajos: estudio de prevalenciaFactores relacionados con la rotación laboral de médicos en consultorios del Gran SantiagoFibrosis quística como patología GES: una mirada críticaHipersensibilidad dentinaria: comparación de diferentes alternativas terapéuticasImpacto del GES en cáncer mamario: seguimiento a 5 años en un hospital del SSMSImplementación de la política nacional de medicamentos: percepción del profesional químico farmacéuticoLa implementación de políticas públicas cambió mortalidad de los pacientes gran quemado en Chile¿La infertilidad debería ser considerada un problema de salud pública en el Perú?Modelo de monitoreo de una política de protección a la infanciaMortalidad materna en el Hospital Dr. Alfredo van Grieken Coro, Estado Falcón, Venezuela 2005-2009Objetivos de desarrollo del milenio. Modelación de la mortalidad infantil Nicaragua - Costa Rica 1978-2008Percepción de riesgo y beneficio respecto del cigarrillo y su relación con el tabaquismo adolescentePolíticas públicas y salud intercultural: la experiencia de la organización indígena Taiñ adkimnPrevalencia de atipias celulares del cuello uterino en mujeres entre 18 y 24 añosProceso de ser histerectomizada: relatos de experiencias de mujeres en un hospital público de SantiagoProceso de ser histerectomizada: relatos de experiencias de mujeres en un hospital público de SantiagoPrograma Auge y cáncer cervicouterino: calidad de atención percibida por las usuarias del programaResolución quirúrgica por patología adenoamigdalina: ¿Es la población mapuche un grupo de riesgo?Resultados de alcoholemias tanatológicas del Servicio Médico Legal de Copiapó 1999-2009Resultados de la evaluación de los objetivos sanitarios de la década 2000-2010Una mirada a los servicios de salud para adolescentes en Puente Alt

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    No full text
    International audienceA primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)  MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the νe component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(Eν) for charged-current νe absorption on argon. In the context of a simulated extraction of supernova νe spectral parameters from a toy analysis, we investigate the impact of σ(Eν) modeling uncertainties on DUNE’s supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(Eν) must be substantially reduced before the νe flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires σ(Eν) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(Eν). A direct measurement of low-energy νe-argon scattering would be invaluable for improving the theoretical precision to the needed level
    corecore